10^2+(2x)^2=500

Simple and best practice solution for 10^2+(2x)^2=500 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10^2+(2x)^2=500 equation:



10^2+(2x)^2=500
We move all terms to the left:
10^2+(2x)^2-(500)=0
determiningTheFunctionDomain 2x^2-500+10^2=0
We add all the numbers together, and all the variables
2x^2-400=0
a = 2; b = 0; c = -400;
Δ = b2-4ac
Δ = 02-4·2·(-400)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*2}=\frac{0-40\sqrt{2}}{4} =-\frac{40\sqrt{2}}{4} =-10\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*2}=\frac{0+40\sqrt{2}}{4} =\frac{40\sqrt{2}}{4} =10\sqrt{2} $

See similar equations:

| 10^2+(2*10)^2=x | | 0.8x=2.8 | | 10^2+x=500 | | 10+8x=11x-6 | | 10+8n=11n-6 | | 10^2+2*10^2=x | | p=8/24 | | 3.7+10m=7.81 | | (2x+2x)^2=400 | | 5(y-2)-3=-3(-6y+9)-9y | | x^2+4x^2=500 | | x^2+(2x)^2=500 | | 5x-20=3x-16 | | x^2+2(x^2)=500 | | 56=3.14(3.125+2.125)+2x | | x+2x=22.36 | | x^2+2x^2=500 | | -8=4p+4 | | –3w–5=1 | | F(x)=4x^2-2x+4 | | 5000=2500+125t | | F(x)=|2x+3| | | x(-2)=2 | | −1/3(6−9d)=40 | | 4=5-v | | (x²+2)/2=9 | | 1.2x−3= | | 3|x+9|=15 | | 1/2(4x+10)-1=-3/5(25x-10) | | 3×(x×4)=5x+6 | | -3x+7=7x+15 | | 100000=18x/100 |

Equations solver categories